Для корректной работы этого сайта необходима поддержка JavaScript и "cookies" Вашим браузером. Подробнее

МЫ ПРИНИМАЕМ ЗАКАЗЫ ПО ТЕЛЕФОНАМ +7 (495) 374-94-88, 8(800) 775-80-36 (бесплатно для регионов) С 10:00 ДО 19:00
Здравствуйте, Гость! (Войти в систему)

Ваша корзина

В корзине 0 товаров на сумму
0 руб


Отложено: 0 товаров

Ваша корзина пуста.

Нажмите кнопку "В корзину" на интересующих вас товарах.

Лучшие книги недели

Древняя Русь в свете зарубежных источников - Джаксон Т.Н. - купить  книгу с доставкой

Древняя Русь в свете зарубежных источников

Джаксон Т.Н., Бибиков М.В
532 руб
Мир-система Модерна. Том 1. Капиталистическое сельское хозяйство и истоки европейского мира-экономики в XVI веке - Иммануэль Валлерстайн - купить  книгу с доставкой

Мир-система Модерна. Том 1

Иммануэль Валлерстайн
675 руб
Евреи, конфуцианцы и протестанты. Культурный капитал и конец мультикультурализма - Лоуренс Харрисон - купить  книгу с доставкой

Евреи, конфуцианцы и протестанты

Лоуренс Харрисон
388 руб
Феномены мозга - Бехтерев В. М. - купить  книгу с доставкой

Феномены мозга

Бехтерев В. М.
415 руб

Примеры метрических пространств - 3 изд.

Скворцов В.А.

Примеры метрических пространств - 3 изд. - Скворцов В.А. - купить  книгу с доставкой

Код товара: 888019

ISBN: 978-5-94057-915-1

Тип переплета: мягкая обложка

Формат книги: 60x88/16 (145x210 мм)

Количество страниц: 24

Временно отсутствует
Чтобы оставить заявку, введите свой e-mail
0
Аннотация к книге "Примеры метрических пространств - 3 изд.":
В математике часто рассматриваются множества, между элементами («точками») которых определено расстояние (метрика). Такие множества называют метрическими пространствами, если выполнены соответствующие аксиомы. Существует много разных способов определить расстояние в разных множествах. В брошюре обсуждается, как можно измерять расстояние не только между точками на плоскости, но и между кривыми, множествами, функциями. Важным примером расстояния между кривыми является хаусдорфова метрика. Многие метрические пространства разительно отличаются от привычной евклидовой плоскости. Примером метрики с необычными свойствами может служить p-адическая метрика, относящаяся к классу так называемых неархимедовых метрик.

Текст брошюры представляет собой дополненную обработку записи лекции, прочитанной автором 17 февраля 2001 года на Малом мехмате МГУ для школьников 9—11 классов (запись Р. К. Ахунжанова).

Брошюра рассчитана на широкий круг читател ей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей...