Для корректной работы этого сайта необходима поддержка JavaScript и "cookies" Вашим браузером. Подробнее

МЫ ПРИНИМАЕМ ЗАКАЗЫ ПО ТЕЛЕФОНАМ +7 (495) 374-94-88, 8(800) 775-80-36 (бесплатно для регионов) С 10:00 ДО 19:00
Здравствуйте, Гость! (Войти в систему)

Ваша корзина

В корзине 0 товаров на сумму
0 руб


Отложено: 0 товаров

Ваша корзина пуста.

Нажмите кнопку "В корзину" на интересующих вас товарах.

Лучшие книги недели

Древняя Русь в свете зарубежных источников - Джаксон Т.Н. - купить  книгу с доставкой

Древняя Русь в свете зарубежных источников

Джаксон Т.Н., Бибиков М.В
532 руб
Мир-система Модерна. Том 1. Капиталистическое сельское хозяйство и истоки европейского мира-экономики в XVI веке - Иммануэль Валлерстайн - купить  книгу с доставкой

Мир-система Модерна. Том 1

Иммануэль Валлерстайн
675 руб
Евреи, конфуцианцы и протестанты. Культурный капитал и конец мультикультурализма - Лоуренс Харрисон - купить  книгу с доставкой

Евреи, конфуцианцы и протестанты

Лоуренс Харрисон
388 руб
Феномены мозга - Бехтерев В. М. - купить  книгу с доставкой

Феномены мозга

Бехтерев В. М.
415 руб

Математическое моделирование в теории дифракции с использованием априорной информации об аналитических свойствах решения

Смирнова Н.И., Кюркчан А.Г.

Математическое моделирование в теории дифракции с использованием априорной информации об аналитических свойствах решения - Смирнова Н.И. - купить  книгу с доставкой
Авторское издание, мягкая обложка, 2014

Код товара: 1033393

ISBN: 978-5-903650-27-9

Тип переплета: мягкая обложка

Формат книги: 60x90/16 (145x215 мм)

Количество страниц: 226

Временно отсутствует
Чтобы оставить заявку, введите свой e-mail
0
Аннотация к книге "Математическое моделирование в теории дифракции с использованием априорной информации об аналитических свойствах решения":
Монография посвящена методам математического моделирования в теории дифракции, опирающимся на использование априорной информации об аналитических свойствах решения.
Во введении обсуждаются примеры, показывающие важность учета априорной информации при разработке алгоритмов решения задач дифракции, в частности, информации об аналитических свойствах решения. На качественном уровне дано разъяснение понятия особых точек волнового поля, рассмотрены простые примеры.
В первой главе дан вывод основных аналитических представлений волновых полей и установлены точные границы областей существования этих представлений, изложена техника локализации особых точек аналитического продолжения волновых полей, определения их характера, рассмотрены примеры такого рода локализации.
Вторая глава монографии посвящена методам вспомогательных токов и источников решения задач дифракции на компактных рассейвателях. Дано строгое обоснование этих методов, базирующееся на априорной информации об особенностях аналитического продолжения дифракционного поля. Изложен модифицированный метод вспомогательных токов, в основе которого лежит построение носителя вспомогательных токов путем аналитической деформации границы рассеивателя. Приведены примеры решения конкретных задач дифракции.
Третья глава посвящена методам нулевого поля и Т-матриц, пользующихся огромной популярностью при решении задач радиофизики, радиоастрономии, биофизики и др. Обоснована фундаментальная роль особенностей аналитического продолжения волнового поля при корректной реализации этих методов. Предложены модифицированные методы нулевого поля и Т-матриц. основанные на построении поверхности, на которой выполняется условие нулевого поля в соответствующем интегральном уравнении, при помощи аналитической деформации фаницы рассеивателя. Рассмотрен ряд примеров, иллюстрирующих преимущества предложенных модификаций.
В четвертой главе дано изложение метода продолженных граничных условий, основанного на смещении граничного условия с поверхности рассеивателя на некоторую дру1ую поверхность, расположенную достаточно близко к границе рассеивателя и лежащую в области, где ищется решение. В результате граничная задача сводится к решению интегрального уравнения Фредгольма 1-го или Н-го рода с гладким ядром, что делает предлагаемый подход чрезвычайно простым и универсальным. Дано обоснование метода и приведены подробные алгоритмы его реализации, рассмотрен ряд примеров решения задач дифракции этим методом.
Пятая глава содержит изложение метода диаграммных уравнений, в котором задачи дифракции и распространения волн сводятся к решению некоторых интегрально-операторных уравнений относительно спектральной функции - диаграммы волнового поля. Дано строгое обоснование метода и установлены точные фаницы его применимости к задачам дифракции на одиночном рассеивателе, фуппе тел, периодических решетках, границе раздела сред. Рассмотрены многочисленные примеры, иллюстрирующие эффективность метода.
Введение, главы I, II и V написаны А.Г. Кюркчаном, главы III и IV - Н.И. Смирновой.
Библиофафия содержит около 150 наименований, из которых более 100 - это работы авторов и их коллег.